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Introduction. The elements of the systems of states encountered in quantum
mechanical problems are typically orthogonal to one another, either because
they have, in point of computational convenience, been assumed to be, or
because it was as eigenstates of an observable that they were recommended
to our attention. But when we construct the density matrix1

ρρρ =
∑

ensemble

|n)pn(n| (1)

to describe a statistical mixture of states there is, in general, no reason to assume
(m|n) = δmn; no principle of physics prevents our mixing non-orthogonal
states.2 I have had occasion elsewhere3 to notice that because ρρρ is hermitian it
possesses a population of real eigenvalues ρk and orthonormal (!) eigenvectors
|ρk), from which it acquires the spectral representation

ρρρ =
∑

k

|ρk)ρk(ρk| (2)

1 According to Max Jammer, this device—usually attributed to John von
Neumann—was also invented independently, and at the same time, by Hermann
Weyl. For historical details see Jammer’s very interesting Chapter 9 in The
Conceptual Development of Quantum Mechanics ().

2 This point of principle is not contradicted by the circumstance that in its
most frequently encountered application the density matrix

ρρρ =
∑

n

|n) 1
Z e

− 1
kT En(n|

refers to a thermalized mixture of energy eigenstates, and those, of course, are
orthonormal if the energy spectrum is non-degenerate.

3 “Status and Ramifications of Ehrenfest’s Theorem,” ().
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It can be shown that the numbers ρk are non-negative and sum to unity (because
the numbers pn are and do), and follows therefore from (2) that the mixture—
originally represented to contain states {|n)} with probabilities {pn}—can as
well be claimed to contain states {|ρk)} with probabilities {ρk}. The “mixed
state” concept is susceptible, therefore, to a certain fundamental ambituity; (2)
stands at the “spectral center” of a population of alternative conceptualizations
of the same root notion, and it is with the population (not with any of its
arbitrarily selected individual members) that the physics of the matter is most
properly associated.

Just as we might write |ψ) ∼ ei(phase)|ψ) to describe the ambiguity present
in the concept of “state vector,” i.e., to survey the population of state vectors
physically equivalent to a given state vector |ψ),4 so would we like to be in
position to characterize the population of alternative representations (1) of any
given instance of (2). Each of those, since equivalent to the same spectral
representation (2), is physically equivalent to each of the others, and each is
distinguished from the spectral representation by the presence of some degree of
non-orthogonality among the member states. We stand in evident need of tools
adequate to permit the efficient management of non-orthogonality conditions,
and it is apparent that the standard device—get rid of the non-orthogonality
by adoption of some orthogonalization procedure—is not appropriate to the
problem at hand, for it would in general do violence to the structure

ρρρ = weighted sum of projection operators

characteristic of all density matrices.

1. Reciprocal sets in real vector spaces. Let vectors {aaa1, aaa2, . . . , aaan} span the
real inner-product space Rn, but be subject to no presumed inner-product
relationships beyond the one

∣∣∣∣∣∣∣∣
aaa1···aaa1 aaa1···aaa2 . . . aaa1···aaan

aaa2···aaa1 aaa2···aaa2 . . . aaa2···aaan
...

...
...

aaan···aaa1 aaan···aaa2 . . . aaan···aaan

∣∣∣∣∣∣∣∣ �= 0 (3)

implicit in the presumed linear independence of the vectors aaai; in particular,
we do not presume orthonormality:

aaai·········aaaj = δij is not assumed

An arbitrary vector XXX ∈ Rn can be developed

XXX = Xkaaak : summation convention understood

4 It is interesting that no such ambituity survives in the associated density
matrix ρρρ ≡ |ψ)(ψ|.
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so we have

aaaj···XXX =gjkX
k

gjk ≡ aaaj···aaak (4)

By standard convention G = ‖gjk‖ and G
–1 = ‖gij‖,5 in which notation we have

gijaaaj···XXX = gijgjkX
k = Xi

from which we obtain the decomposition formula

XXX = aaaig
ijaaaj···︸ ︷︷ ︸XXX (5)

effectively the identity operator

If the set {aaak} does in fact possess the orthonormality property, then gij is
1 or 0 according as i = j or i �= j, and (5) assumes a form

XXX =
∑

i

aaai aaai···XXX

These last results fall much more familiarly upon the eye if one appropriates
the essence of Dirac’s notational trick, writing

|X) =
∑

i

∑
j

|ai)g
ij(aj |X)

↓
=

∑
i

|ai)(ai|X) in the orthonormal case

We conclude that the orthonormal completeness condition
∑
|ai)(ai| = I

should in the more general case be expressed∑
i

∑
j

|ai)g
ij(aj | = I (6)

The question now presents itself: What—beyond the fact that they arise
by inversion of G ≡ ‖(ai|aj)‖—can we say about the numbers gij which enter so
critically into (6)? Introduce vectors {AAA1,AAA2, . . . ,AAAn} which are “reciprocal”
to {aaa1, aaa2, . . . , aaan} in the defining sense that they satisfy the “biorthogonality
condition”

AAAi···aaaj = δi
j which in Dirac notation reads (Ai|aj) = δi

j (7)

5 In this notation (3) reads g ≡ detG �= 0, so the existence of G
–1 is assured.
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Immediately (Ai|X) = (Ai|ak)Xj = δi
kX

k = Xi = gik(ak|X) which, since
valid for all |X), entails

(Ai| = gij(aj | whence |Ai) = gij |aj) ; i.e., AAAi = gijaaaj

aaaj = gjkAAA
k

}
(8)

and in a particular case (set XXX = AAAj) gives

gij = (Ai|Aj) ⇐= compare =⇒ gij = (ai|aj) (9)

Equations (7–9) make especially clear the sense in which the spanning sets {aaak}
and {AAAk } are “reciprocal.”

2. Explicit construction of the reciprocal set in the 2-dimensional case. It is in
this simplest case feasible to proceed directly from (8). From

G =
∣∣∣∣aaa1···aaa1 aaa1···aaa2

aaa2···aaa1 aaa2···aaa2

∣∣∣∣
we obtain

G
–1 = ‖gij‖ = (1/g)

∣∣∣∣ aaa2···aaa2 −aaa1···aaa2

−aaa2···aaa1 aaa1···aaa1

∣∣∣∣ (10.1)

with

g ≡ detG = a2
1a

2
2 − (aaa1···aaa2)

2 > 0 by Schwarz’ inequality (10.2)
= (a1a2 sin θ)2 = (area of parallelogram)2

where
a1 ≡ length of aaa1

a2 ≡ length of aaa2

θ ≡ angle subtended between aaa1 and aaa1

Returning with (10) to (8), we have

AAA1 = 1
g

{
(aaa2···aaa2)aaa1 − (aaa1···aaa2)aaa2

}
AAA2 = 1

g

{
(aaa1···aaa1)aaa2 − (aaa2···aaa1)aaa1

}
}

(11)

Quick calculation establishes that AAA1···aaa1 = AAA2···aaa2 = 1 and that

AAA1 ⊥ aaa2 and AAA2 ⊥ aaa1 (12)

We observe finally that

AAA1···AAA1 = (1/g)(length of aaa2)
2

AAA2···AAA2 = (1/g)(length of aaa1)
2

AAA1···AAA2 = (1/g)(aaa1···aaa2)
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and that
physical dimension of AAA =

1
physical dimension of aaa

(13)

These last remarks make our use of the term “reciprocal” to describe the
relationship of {AAAk} to {aaak} seem all the more apt.

Alternatively, we might take the requirement (12) as our starting point.
Quick calculation then establishes that necessarily

AAA1 = λ1

{
(aaa2···aaa2)aaa1 − (aaa1···aaa2)aaa2

}
AAA2 = λ2

{
(aaa1···aaa1)aaa2 − (aaa2···aaa1)aaa1

}
and that to achieve AAA1···aaa1 = AAA2···aaa2 = 1 we must set

λ1 = λ2 =
1

(aaa1···aaa1)(aaa2···aaa2)− (aaa1···aaa2)(aaa2···aaa1)
= 1/g

and so we recover precisely (11), from which the numbers gij can (by appeal to
(8)) simply be read off . It is this latter approach which, as will emerge, serves
better to illuminate the general case.

3. Explicit construction of the reciprocal set in the 3-dimensional case. The
obvious way to construct vectors {AAA1,AAA2,AAA3 } which are consistent with this
generalization of (12)

AAA1 ⊥ aaa2 & aaa3, AAA2 ⊥ aaa3 & aaa1 and AAA3 ⊥ aaa1 & aaa2

is to write
AAA1 = λ1

{
aaa2 × aaa3

}
AAA2 = λ2

{
aaa3 × aaa1

}
AAA3 = λ3

{
aaa1 × aaa2

}

 (14.1)

To achieve AAA1···aaa1 = AAA2···aaa2 = AAA2···aaa2 = 1 we have then only to set6

λ1 = λ2 = λ3 = λ ≡ 1
(aaa1aaa2aaa3)

=
1

volume of parallelopiped
(14.2)

We observe that the dimensional relationship (13) is again enforced. With the
aid of the elementary identity

(aaa× bbb)× (ccc× ddd) = (aaacccddd)bbb− (bbbcccddd)aaa

= (aaabbbddd)ccc− (aaabbbccc)ddd

6 Here I borrow from H. Lass (Vector and Tensor Analysis (), p. 24)—
who borrowed from E. B. Wilson’s account (Vector Analysis (), p. 110) of
the vector analysis of Gibbs—a useful yet not entirely standard notation for the
“triple scalar product”

(aaabbbccc) ≡ aaa···(bbb× ccc)
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we find that

volume of reciprocal parallelopiped = (AAA1AAA2AAA3)

= λ3(aaa1aaa2aaa3)
2

=
1

(aaa1aaa2aaa3)

=
1

volume of (direct) parallelopiped

which lends further naturalness to our use of the term “reciprocal.”

I note in passing that we have here converged upon ideas which have for a
long time been standard to mathematical crystalographers, and have in more
recent times become standard to solid state physics. The former tradition
stems from work of Bravis,7 and it was another Frenchman—Léon Brillouin—
who was among the first to draw attention to the quantum mechanical utility of
Bravis’ ideas.8 In such a context, an interest in non-orthogonal sets {aaa1, aaa2, aaa3}
is dictated by the physical design of crystals, which must be accepted as a
fact of life from which no “orthogonalization procedure” can provide escape.
Collateral interest in the associated reciprocal set arises in part from the form
the exponential which enters into the definition of the Fourier transform.

Returning with the following elementary identity

(aaa× bbb)···(ccc× ddd) = (aaa···ccc)(bbb···ddd)− (aaa···ddd)(bbb···ccc)

to (14), and proceeding with (9) in mind, we compute

g11 = AAA1···AAA1 = λ2
{
(aaa2···aaa2)(aaa3···aaa3)− (aaa2···aaa3)(aaa3···aaa2)

}
g21 = g12 = AAA1···AAA2 = λ2

{
(aaa2···aaa3)(aaa3···aaa1)− (aaa2···aaa1)(aaa3···aaa3)

}
g31 = g13 = AAA1···AAA3 = λ2

{
(aaa2···aaa1)(aaa3···aaa2)− (aaa2···aaa2)(aaa3···aaa1)

}
g22 = AAA2···AAA2 = λ2

{
(aaa3···aaa3)(aaa1···aaa1)− (aaa3···aaa1)(aaa1···aaa3)

}
g32 = g23 = AAA2···AAA3 = λ2

{
(aaa3···aaa1)(aaa1···aaa2)− (aaa3···aaa2)(aaa1···aaa1)

}
g33 = AAA3···AAA3 = λ2

{
(aaa1···aaa1)(aaa2···aaa2)− (aaa1···aaa2)(aaa2···aaa1)

}
7 August Bravis (–) was a French naval officer and adventurer (he

climbed Mont Blanc and other major peaks, participated in the exploration of
Lapland, etc.) who made significant contributions to a remarkable variety of
scientific disciplines. It was in  that he described the 14 possible regular
arrangements of points in 3-space (that classic paper was reprinted in English
translation as Memoir No 1 by the Crystalographic Society of America in );
his ideas were further elaborated in his posthumous Études cristallographiques
().

8 For a good account of the material to which I allude, see Chapters 4–7 of
N. W. Ashcroft & N. D. Mermin, Solid State Physics (), where precisely
my equations (14) can be found on p. 86. See also Chapter 6 in Brillouin’s Wave
Propagation in Periodic Structures (2nd edition, ).
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In other words,

G
–1 = λ2




+
∣∣∣∣ g22 g23
g32 g33

∣∣∣∣ −
∣∣∣∣ g21 g23
g31 g33

∣∣∣∣ +
∣∣∣∣ g21 g22
g31 g32

∣∣∣∣
−

∣∣∣∣ g12 g13
g32 g33

∣∣∣∣ +
∣∣∣∣ g11 g13
g31 g33

∣∣∣∣ −
∣∣∣∣ g11 g12
g31 g32

∣∣∣∣
+

∣∣∣∣ g12 g13
g22 g23

∣∣∣∣ −
∣∣∣∣ g11 g13
g21 g23

∣∣∣∣ +
∣∣∣∣ g11 g12
g21 g22

∣∣∣∣




But this—provided we can establish that

λ2 =
1

det G
(15)

—is precisely what we would have written down had we set out to compute G
–1

by means of the standard matrix inversiton algorithm.

The proof of (15), though not difficult, is in fact quite informative, but
requires some notational preparation: let us for the moment agree—the better
to keep simple things simple, and to avoid the distraction of a bewildering
profusion of indices—to write

aaa for aaa1, bbb for aaa2, ccc for aaa3, AAA for AAA1, BBB for AAA2, CCC for AAA3

and proceeding in reference to some/any orthonormal basis

{eee1, eee2, eee3} with eeei···eeej = δij

Let us agree, moreover, to write aaa=
∑
ãieeei , etc. and in that sense to understand

the standard notations

aaa =


 ã1

ã2

ã3


 , bbb =


 b̃1

b̃2

b̃3


 and ccc =


 c̃1

c̃2

c̃3




To obtain (15) we have only to notice that
 ã1 ã2 ã3

b̃1 b̃2 b̃3

c̃1 c̃2 c̃3





 ã1 b̃1 c̃1

ã2 b̃2 c̃2

ã3 b̃3 c̃3


 =


aaa···aaa aaa···bbb aaa···ccc
bbb···aaa bbb···bbb bbb···ccc
ccc···aaa ccc···bbb ccc···ccc


 = G

Immediately

g ≡ det G =

∣∣∣∣∣∣
ã1 b̃1 c̃1

ã2 b̃2 c̃2

ã3 b̃3 c̃3

∣∣∣∣∣∣
2

= (aaabbbccc)2 (16)

which establishes (15) and at the same time provides a seldom-encountered
coordinate-free description of the triple scalar product :

(aaabbbccc) ≡ aaa···(bbb× ccc) =

√√√√√det


aaa···aaa aaa···bbb aaa···ccc
bbb···aaa bbb···bbb bbb···ccc
ccc···aaa ccc···bbb ccc···ccc


 (17)
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Interestingly, one could use (17) to assign meaning to a “generalized triple
scalar product” which makes sense—and exhibits all the familiar symmetry
properties9—even when the vectors in question are not 3-vectors.10 And by
natural extension one could assign meaning to a

(aaabbbcccddd) : quadruple scalar product of n-vectors
(aaabbbcccdddeee) : quintuple scalar product of n-vectors, etc.

The mechanism that lies at the base of (16) is at once simpler and deeper
than I have represented it to be, and it is clear understanding of this fact that
points the way toward the dimensional generalization of (14). Let an arbitrary
vector XXX have coordinates Xi with respect to the generally non-orthogonal
basis

{aaa1, aaa2, aaa3} with aaai···aaaj = gij

but coordinates X̃i with respect to the orthonormal basis {eee1, eee2, eee3}: from
XXX = Xiaaai = Xiaj

i eeej = X̃jeeej we read


 X̃1

X̃2

X̃3


 =


 a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3




︸ ︷︷ ︸

X1

X2

X3




=


 ã1 b̃1 c̃1

ã2 b̃2 c̃2

ã3 b̃3 c̃3


 ≡ A : transformation matrix

Evidently the expression which first announced itself in the form aaa···(bbb× ccc) has
deeper significance as the determinant of a transformation matrix :

aaa···(bbb× ccc) = A ≡ det A (18)

Since gij transforms covariantly, we have

gij = ak
ia

l
j g̃kl with g̃kl = δkl

giving

g = A2g̃ : g transforms as a density of weight W = 2
g̃ = 1

This, I claim, is the deeper—and readily generalizable—meaning of (16).

9 Those are simply the symmetries of εijk, which is to say: the symmetries
of the alternating group on three objects.

10 Of course, when n �= 3 it becomes meaningless to write aaa···(bbb × ccc), and
incorrect to write (aaabbbccc) =

√
det G.
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We are in position now to reexpress (14)

Ãi = δijÃj = Ãi with Ãi = 1
(abcabcabc)εijk b̃

j c̃k

B̃i = δijB̃j = B̃i with B̃i = 1
(abcabcabc)εijk c̃

j ãk

C̃i = δijC̃j = C̃i with C̃i = 1
(abcabcabc)εijkã

j b̃k

(abcabcabc) ≡ εpqrã
pb̃q c̃r

Here as previously, the distracting tildes identify coordinates relative to an
imported orthonormal basis, and the equations on the left remind us that, with
respect to the metric δij , index placement expresses a “distinction without a
difference.” But the preceding equations make such tensor-theoretic good sense
as (with one obvious modification) to work in any coordinate system. If, in
particular, we—as previously—take

aaa =


 a1

a2

a3


 =


 1

0
0


 , bbb =


 b1

b2

b3


 =


 0

1
0


 and ccc =


 c1

c2

c3


 =


 0

0
1




to refer to the {aaa1, aaa2, aaa3} basis most natural to this discussion, we have

Ai = 1
{abcabcabc}εijkb

jck and Ai = gijAj

Bi = 1
{abcabcabc}εijkc

jak and Bi = gijBj

Ci = 1
{abcabcabc}εijka

jbk and Ci = gijCj


 (19)

{abcabcabc} ≡ εpqra
pbqcr = 1

Recalling11 that the Levi-Civita tensor transforms by numerical invariance if
and only if transformed as a tensor density of weight W = −1, we see that (19)
describes structures of the form

vector density
scalar density of same weight

= vector of zero weight

Transparently 
A1 A2 A3

B1 B2 B3

C1 C2 C3





 a1 b1 c1

a2 b2 c2

a3 b3 c3


 =


 1 0 0

0 1 0
0 0 1




Working from (19) we have
A1

A2

A3


 =


 1

0
0


 ,


B1

B2

B3


 =


 0

1
0


 and


C1

C2

C3


 =


 0

0
1




11 See §3 in “Electrodynamical applications of the exterior calculus” ().
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giving 
A1

A2

A3


 = 1st column of G

–1


B1

B2

B3


 = 2nd column of G

–1


C1

C2

C3


 = 3rd column of G

–1

whence

AAA1 = 1
g

{
+

∣∣∣∣ g22 g23
g32 g33

∣∣∣∣aaa1 −
∣∣∣∣ g12 g13
g32 g33

∣∣∣∣aaa2 +
∣∣∣∣ g12 g13
g22 g23

∣∣∣∣aaa3

}

AAA2 = 1
g

{
−

∣∣∣∣ g21 g23
g31 g33

∣∣∣∣aaa1 +
∣∣∣∣ g11 g13
g31 g33

∣∣∣∣aaa2 −
∣∣∣∣ g11 g13
g21 g23

∣∣∣∣aaa3

}

AAA3 = 1
g

{
+

∣∣∣∣ g21 g22
g31 g32

∣∣∣∣aaa1 −
∣∣∣∣ g11 g12
g31 g32

∣∣∣∣aaa2 +
∣∣∣∣ g11 g12
g21 g22

∣∣∣∣aaa3

}

at which point we have in effect recovered an instance of (8).

4. Explicit construction of the reciprocal set in the general case. Returning now
to the generality of §1, let {aaa1, aaa2, . . . , aaan} refer to any basis in Rn, and write
G ≡ ‖gij‖ with gij ≡ aaai···aaaj . In component form the elements of the reciprocal
basis {AAAp : p = 1, 2, . . . n} can, in generalization of (19), be described

Api = gijAp
j with Ap

j ≡ 1
Aεk1k2...kp...kn

ak1
1 a

k2
2 · · ·akp

p · · · akn
n (20)

↑ ↑
replace with j omit this factor

with A ≡ εk1k2...kn
ak1
1 a

k2
2 · · · akn

n . Here the k-indexed numbers ak
q comprise the

components of aaaq relative to any selected basis (which may be the natural basis
{aaa1, aaa2, . . . , aaan}, and may be some orthonormal basis {eee1, eee2, . . . , eeen}, but need
not be either one). Immediately,

Ap
ja

j
q = δp

q (21.1)

To say the same thing another way: if AAAp = Apiaaai (here we have opted to work
in the “natural basis,” where ak

q = δk
q causes (20) to simplify greatly) then

AAAp···aaaq = Apigiq = Ap
jδ

j
q = Ap

q

= 1
ε123...n

ε12...p...n = δp
q (21.2)

↑
replace with q
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which reproduces (7). These results demonstrate that (20) works, and in fact
does its work fairly efficiently. It works, however, by appeal to a coordinate
system. Means to avoid that formal defect—and thus to recover one of the
more attractive features both of (11) and of (14)—are afforded by the exterior
calculus.

Let AAA be an n-dimensional antisymmetric tensor of rank p, let BBB be ditto
of rank q

AAA ≺ Ai1i2...ip

BBB ≺ Bj1j2...jq

The “wedge product” of AAA and BBB (sometimes called their “exterior product”)
is defined12

AAA ∧BBB ≺




1
p!q!δ

i1i2...ip+q
a1a2...apb1b2...bq

Aa1a2...apBb1b2...bq : p+ q ≤ n

0 : p+ q > n
= antisymmetrized tensor product

and has these notable properties:

AAA ∧ (BBB +CCC ) = (AAA ∧BBB) + (AAA ∧CCC ) : distributivity (22.1)
(AAA ∧BBB) ∧CCC = AAA ∧ (BBB ∧CCC ) : associativity (22.2)

AAA ∧BBB = (−)pqBBB ∧AAA =
{
−BBB ∧AAA if p and q are both odd
+BBB ∧AAA otherwise

(22.3)

If, in particular, AAA and BBB are vectors (i.e., if p = q = 1 and n ≥ 2) then

AAA ∧BBB ≺ δij
abA

aBb = AiBj −AjBi

↑
δij

ab ≡
∣∣∣∣ δi

a δi
b

δj
a δj

b

∣∣∣∣ = δi
aδ

j
b − δj

aδ
i
b

which generalizes properties familiarly associated (case n = 3) with the cross
product. From a set of vectors AAA1,AAA2, . . . ,AAAm (m ≤ n) we can form this
antisymmetric tensor of rank m

AAA1 ∧AAA2 ∧ · · · ∧AAAm ≺ δi1i2...im
a1a2...am

Aa1
1 A

a2
2 · · ·Aam

m

which in consequence of (22) vanishes unless the vectors in question are linearly
independent.

12 See my electrodynamics (), p. 152; H. Flanders, Differential Forms,
with Applications to the Physical Sciences (), §2.3. Here I allow myself to
borrow casually from the exterior calculus; all missing details can be found
either in those sources or in the essay cited in the preceding footnote.
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The vectors aaa1, aaa2, . . . , aaan provice, by assumption, a “full house” of such
vectors, and when wedged together yield an antisymmetric tensor with the
special property that

rank = dimension

Such an object is the dual of a scalar, and the geometrical meaning of that
scalar becomes obvious when one introduces the identity13

δi1i2...in
j1j2...jn

= εi1i2...inεj1j2...jn

into
aaa1 ∧ aaa2 ∧ · · · ∧ aaan ≺ δi1i2...in

j1j2...jn
aj1
1 a

j2
2 · · · ajn

n

Immediately

= εi1i2...in · det



a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

...
an
1 an

2 . . . an
n




︸ ︷︷ ︸
(23)

≡ A

The determinant is most familiar as the “Jacobian” encountered in connection
with the transformationXi �→ X̃i = ai

jX
j ; it permits one to write (for example)

dX̃1dX̃2 · · · dX̃1 =
∂(X̃1, X̃2, . . . , X̃n)
∂(X1, X2, . . . , Xn)︸ ︷︷ ︸ dX

1dX2 · · · dXn

Jacobian = A ≡ det A

13 It is, in this connection, important to know that the Levi-Civita tensor
comes actually in two flavors (which I attempt to distinguish notationally by
using what TEX calls \varepsilon for the one, \epsilon for the other); one is
contravariant, the other covariant, and each is assigned such weight as to cause
it to transform by numerical invariance:

εi1i2...in ≡ sgn
(
i1 i2 . . . in
1 2 . . . n

)
: contravariant, of weight W = +1

εj1j2...jn
≡ sgn

(
1 2 . . . n
j1 j2 . . . jn

)
: covariant, of weight W = −1

In metrically connected contexts (i.e., when tensors gij and gij are available to
manipulate indices) one can also form εi1i2...in

and εj1j2...jn which (since weight
is no longer correctly mated to rank) do not transform by numerical invariance;
one has

εi1i2...in = g · εi1i2...in

where (since g has weight W = +2) the weight of the expression on the left is
the same as the net weight of the expression on the right of the equality. The
expression on the left—by contrivance—transforms by numerical invariance,
but g doesn’t, so εi1i2...in can’t; its values range on {−g–1, 0,+g–1}, while those
of εj1j2...jn

range on {−g, 0,+g}.
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and can—as already at (18)—be interpreted as the volume of a parallelopiped.14

From (23) if follows finally that

(aaa1 ∧ aaa2 ∧ · · · ∧ aaan)dual ≺ 1
n!εi1i2...in

{
εi1i2...in · det A

}
= A

The construction

aaa1 ∧ aaa2 ∧ · · · ∧ aaap/ ∧ · · · ∧ aaan : aaap omitted

is by nature a totally antisymmetric tensor of rank n− 1, the dual of a vector.
From the general relations (22) it follows readily that

aaaq ∧ (aaa1 ∧ aaa2 ∧ · · · ∧ aaap/ ∧ · · · ∧ aaan) =
{

000 if q �= p, but in the alternative case
(−)p−1 aaa1 ∧ aaa2 ∧ · · · ∧ aaap ∧ · · · ∧ aaan

It becomes natural in the light of this observation to write

aaa1 ∧ aaa2 ∧ · · · ∧ aaap/ ∧ · · · ∧ aaan ≺ δi1i2...ip/ ...in
j1j2...jp/ ...jn

aj1
1 a

j2
2 . . . a

jp
p/ . . . ajn

n

and to notice that

(aaa1 ∧ aaa2 ∧ · · · ∧ aaap/ ∧ · · · ∧ aaan)dual

≺ 1
(n−1)!εjk1...kn−1

{
δk1k2...kn−1

j1j2...jp/ ...jn
aj1
1 a

j2
2 . . . a

jp
p/ . . . ajn

n

}
= εjj1j2...jp/ ...jn

aj1
1 a

j2
2 . . . a

jp
p/ . . . ajn

n

= (−)p−1εk1k2...kp...kn
ak1
1 a

k2
2 · · · akp

p · · · akn
n

↑ ↑
replace with j omit this factor

Evidently we have only to define15

MMMp ≡ (−)p−1aaa1 ∧ aaa2 ∧ · · · ∧ aaap/ ∧ · · · ∧ aaan

(aaa1aaa2 · · ·aaan)
(24.1)

(aaa1aaa2 · · ·aaan) ≡ (aaa1 ∧ aaa2 ∧ · · · ∧ aaan)dual = det A (24.2)

to obtain

aaaq ∧MMMp = (δq
p)dual =

{
null n-form if p �= q
unit n-form if p = q

(25)

where “null n-form”≺ 0 · εi1i2...in and “unit n-form”≺ 1 · εi1i2...in = (1)dual. At
(25) we have achieved a coordinate-free expression of the generalization of (14).
But (25) holds the objects “reciprocal” to the vectors {aaa1, aaa2, . . . , aaan} to be
tensors of rank n− 1 (“psuedo-vectors,” or “(n− 1)-forms” if I may be allowed

14 See in this connection electrodynamics (), p. 184.
15 Holding AAA in reserve for use at (26), I adopt the notation MMM to suggest a

row of ∧’s.
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a slight misappropriation of language standard to the exterior calculus); if we
insist that the objects reciprocal to {aaa1, aaa2, . . . , aaan} be themselves vectors, then
we have only to “dualize” the objects in hand, writing

AAAp ≡ (MMMp)dual ≺ Ap
j = 1

detA
εk1k2...kp...kn

ak1
1 a

k2
2 · · · akp

p · · · akn
n (26)

↑ ↑
replace with j omit this factor

at which point we have recovered precisely (20). Thus far have we proceeded
without appeal to the metric structure of the vector space; the metric comes
into play only when we undertake to “lift the index:” Ap

i �→ Api = gijAp
j .

In an effort to further reduce the element of strangeness that (because
of the bristling indices?) may still cling to (26), I note that at (14) a bright
sophomore might have written

AAA1 = 1
detA

∣∣∣∣∣∣
iii a1

2 a1
3

jjj a2
2 a2

3

kkk a3
2 a3

3

∣∣∣∣∣∣
AAA2 = 1

detA

∣∣∣∣∣∣
a1
1 iii a1

3

a1
1 jjj a2

3

a3
1 kkk a3

3

∣∣∣∣∣∣
AAA3 = 1

detA

∣∣∣∣∣∣
a1
1 a1

2 iii
a2
1 a2

2 jjj
a3
1 a3

2 kkk

∣∣∣∣∣∣
and might, moreover, have noticed that the preceding equations admit straight-
forwardly of dimensional generalization. Such notation suggests, however, that
the results now in hand depend in some critical way upon an orthonormality
assumption, which in fact they don’t.

5. Reciprocal sets in complex vector spaces. There are actually several distinct
ways to “complexify;” I begin by sketching the options in just sufficient detail to
indicate which doors I intend to open en route to my principal subject matter,
and which I will leave shut. So far as concerns notation: I make the adjustment
aaa → zzz to lend emphasis to the fact that we work now in complex space, and
in place of {i, j, . . .} write {α, β, . . .} since I will acquire need also of “dotted
indices” {α̇, β̇, . . .} and find the distinction between ı and i,  and j unconvincing
(besides being awkward to manage in TEX’s math mode).

If {zzz1, zzz2, . . . , zzzn} span Cn then any complex XXX ∈ Cn can be developed
XXX = Xαzzzα, and an arbitrary change of basis zzzα = T β

αz̃zzβ can in this familiar
sense

XXX = Xαzzzα = Xα(T β
αz̃zzβ) = (Tα

βX
β) z̃zzα = X̃αz̃zzα

be said to induce Xα −→ X̃α = Tα
βX

β . Complexification of the preceding
remarks inspires first of all the observation that

{zzz1, zzz2, . . . , zzzn} and {z̄zz1, z̄zz2, . . . , z̄zzn} are generally distinct
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and it would in most contexts be unnatural to assume otherwise; it will always
be possible to write z̄zzα = Cβ

αzzzβ (though this is seldom done), but would in
most contexts be retrograde to assume Cα

β = δα
β . One must be prepared

similarly to allow the elements Tα
β to be, in general, complex. From this it

follows that the elements Xα of a (contravariant) vector and the elements X̄α

of its complex conjugate transform by generally distinct rules:

Xα −→ X̃α = Tα
µX

µ

X̄α −→ ˜̄Xα = T̄α
µX̄

µ

Similarly to be distinguished are the associated covariant rule and its conjugate

X̃β ←− Xβ = T ν
βX̃ν i.e., X̃β = Sν

βXν with Sν
βT

α
ν = δα

β

˜̄Xβ ←− X̄β = T̄ ν
β

˜̄Xν i.e., ˜̄Xβ = S̄ν
βX̄ν

Within complex tensor algebra—otherwise known as “spinor algebra,” though
that term is sometimes reserved for a body of specialized relations16 which arise
within complex tensor algebra—one has therefore to distinguish between
• two kinds of covariance, distinguished by dotted/undotted subscripts;
• two kinds of contravariance, . . .dotted/undotted superscripts;17

• two kinds of weight (called “weight” and “anti-weight” by some authors18).
When we say of the indexed objects X ...α1...α̇2...

...β1...β̇2... that they “transform
as components of a mixed spinor of weight W and anti-weight M ” we mean
that their transform can be described19

SW S̄M · · ·Tα1
µ1 · · · T̄ α̇2

µ̇2 · · ·Sν1
β1 · · · S̄ν̇2

β̇2
X ...µ1...µ̇2...

...ν1...ν̇2...

with S ≡ det‖Sµ
ν‖. Within such a formalism the numerically invariant

Kronecker tensor δα
β is joined by δα̇

β̇ , which assumes the familiar values, but
transforms by the conjugated rule, while the Levi-Civita tensor densities (to
the description of which we have now to add the remark that their anti-weights
are zero) are joined by εα̇1α̇2...α̇n and εβ̇1β̇2...β̇n

, which have weight W = 0 but
anti -weights given by M = ±1. I will say of a spinor that it is

of class {r, ṙ; s, ṡ;W,M }

if it’s components display r undotted superscripts, ṙ dotted superscripts, s
undotted subscripts, ṡ dotted subscripts, and if it transforms as a density of
weight W and anti-weight M . Generally, it makes transformation-theoretic

16 See Élie Cartan, The Theory of Spinors, which is the English translation
() of a monograph first published in .

17 This convention is due to B. L. van der Waerden, “Spinoranalyse,” Gött.
Nachr. 100 (1929), or so I believe.

18 See E. M. Corson, Introduction to Tensors, Spinors, and Relativistic Wave
Equations (), p. 16.

19 Compare my quantum mechanics (), Chapter 2, p. 127.



16 Reciprocal systems of non-orthogonal vectors

good sense to speak of (anti)symmetry with respect to a designated pair of
indices if and only if those indices share the same placement (both up or both
down) and are of the same type (both undotted or both dotted); thus

X ...α...β...
... = X ...β...α...

... makes unrestricted good sense, but

X ...α...
...β... = X ...β...

...α... does not

The preceding remark is standard to tensor algebra, and carries over directly
into spinor algebra. But the availability within the latter formalism of the
∗ operation (complex conjugation) opens the way to some distinctive new
possibilities. The conjugate of a spinor is generally a spinor of a different class

{a, b; c, d; e, f}∗ is of class {b, a; d, c; f, e}︸ ︷︷ ︸
original class if and only if a = b; c = d; e = f

In connection with spinors of the latter—special—type it becomes possible to
speak sensibly of “hermitian (anti)symmetry” with respect to designated pairs
of similarly placed indices; looking, for example, to the simplest such case X α̇β ,
we have

X̃ α̇β = T̄ α̇
µ̇T

β
νX

µ̇ν −−−−−−−−−→
conjugation

(X̃ α̇β)∗ = T α̇
µ̇T̄

β
ν(X µ̇ν)∗

↓ notational adjustment

X̃αβ̇ = Tα
µT̄

β̇
ν̇X

µν̇

= T̄ β̇
µ̇T

α
νX

νµ̇

from which it follows that

if X µ̇ν = ±Xνµ̇ then X̃ α̇β = ±X̃βα̇

We will have immediate need of the notion thus introduced.

To lend metric structure to Cn and, at the same time, to acquire index
manipulation capability we (writing zzzα = xxxα + iyyyα) introduce

gαβ ≡ (zzzα, zzzβ)

=
{
(xxxα, xxxβ)− (yyyα, yyyβ)

}
+ i

{
(xxxα, yyyβ) + (yyyα, xxxβ)

}
= gβα : symmetric square array of complex numbers

g
α̇β̇
≡ (z̄zzα, z̄zzβ)

=
{
(xxxα, xxxβ)− (yyyα, yyyβ)

}
− i

{
(xxxα, yyyβ) + (yyyα, xxxβ)

}
= g

β̇α̇
: complex conjugate of the above

hα̇β ≡ (z̄zzα, zzzβ)

=
{
(xxxα, xxxβ) + (yyyα, yyyβ)

}
+ i

{
(xxxα, yyyβ)− (yyyα, xxxβ)

}
= (hβ̇α)∗ : hermitian square array of complex numbers

= hβα̇




(27)
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Those by matrix inversion acquire companions gαβ , gα̇β̇ and hαβ̇ with the
properties

gανgνβ = δα
β and conjugate gα̇ν̇gν̇β̇ = δα̇

β̇

hαν̇hν̇β = δα
β and conjugate hα̇νhνβ̇ = δα̇

β̇

and give rise to a natural generalization of the familiar index manipulation
protocol:

X ··· ···
···α··· = gαβX

···β···
··· ··· and X ···α···

··· ··· = gαβX ··· ···
···β···

X ··· ···
···α̇··· = g

α̇β̇
X ···β̇···

··· ··· and X ···α̇···
··· ··· = gα̇β̇X ··· ···

···β̇···

X ··· ···
···α̇··· = hα̇βX

···β···
··· ··· and X ···α···

··· ··· = hαβ̇X ··· ···
···β̇···

X ··· ···
···α··· = h

αβ̇
X ···β̇···

··· ··· and X ···α̇···
··· ··· = hα̇βX ··· ···

···β···

From (27) we see that the fundamental spinors gαβ and hα̇β come into
coincidence when the basis vectors {zzz1, zzz2, . . . , zzzn} are real (i.e., when yyyα = 000 :
α = 1, 2, . . . , n). But the transformational persistence of such a state of affairs
requires the transformation matrix to be real. The distinction between dotted
and undotted indices then evaporates; the real and imaginary parts of multiply-
indexed complex objects remain transformationally distinct and unmixed, and
the theory of spinors degenerates into a duplex copy of the theory of real tensors.

The fundamental spinors gαβ and hα̇β transform in ways which invite
matrix formulation:

g̃αβ = Tµ
αgµνT

ν
β can be notated G̃ = T

T
GT

h̃α̇β = T̄ µ̇
α̇hµ̇νT

ν
β can be notated H̃ = T̄

T
HT

It becomes clear in the latter notations that imposition of the conditions

G̃ = G = I would force T to be a complex rotation matrix

H̃ = H = I would force T to be unitary

We stand now in possession of all the essential elements needed to construct
an account of

• the spinor representations of O(3);
• Pauli spin matrices;
• Dirac spinors;

and other such standard material. I won’t, but will instead proceed down a path
less traveled: I look to the construction of the basis {ZZZ1,ZZZ2, . . . ,ZZZn} which is
“biorthogonal” to a given (generally non-orthogonal) basis {zzz1, zzz2, . . . , zzzn}
in Cn. Writing

UUU = Uαzzzα whence ŪUU = Ū α̇z̄zzα̇

VVV = V βzzzβ
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we might look to the spinor invariant UUU···VVV = UαgαβV
β but acquire from

quantum mechanics a special interest in

ŪUU···VVV = Ū α̇hα̇βV
β

which is distinguished from its companion UUU···VVV in this quantum mechanically
indispensible respect:

ŪUU···UUU = Ū α̇hα̇βU
β is

{
manifestly real
≥ 0, and = 0 if and only if UUU = 000

The latter part of the preceding statement is most familiar in the case ‖hα̇β‖ = I.
Its more general validity hinges on a property (spectral non-negativity) of the
hermitian metric, which I now illustrate as it arises in the 2-dimensional case:

‖hα̇β‖ ≡
(
z̄zz1···zzz1 z̄zz1···zzz2
z̄zz2···zzz1 z̄zz2···zzz2

)
abbreviated

(
a c
c̄ b

)
with a and b real

has eigenvalues

λ = 1
2

{
(a+ b)±

√
(a+ b)2 − 4(ab− c̄c)

}
= 1

2

{
(a+ b)±

√
(a− b)2 + 4c̄c

}
But c̄c ≤ ab by the Schwarz inequality, and equality is excluded by a linear
independence assumption (zzz1 and zzz2 span C2), so

= 1
2

{
(a+ b)± (positive number less than a+ b)

}
I will not linger to develop the more powerful apparatus required to establish
such a result in Cn>2.

If UUU = Uµzzzµ then z̄zzν̇ ···UUU = hν̇µU
µ gives hµν̇ z̄zzν̇···UUU = Uµ whence

UUU = zzzµh
µν̇ z̄zzν̇···UUU (28)

which is the complex analog of (5), and gives back (5) when the basis vectors zzz
are in fact real. We are motivated by the structure of this result to define

ZZZµ ≡ hµν̇ z̄zzν̇

z̄zzν̇ = hν̇λZZZ
λ

}
(29)

From Z̄ZZ
α̇···ZZZβ = hα̇µzzzµ···hβν̇ z̄zzν̇ = hα̇µhµν̇h

βν̇ we obtain (see again (9))

hα̇β = Z̄ZZ
α̇···ZZZβ ⇐= compare =⇒ hα̇β = z̄zzα̇···zzzβ (30)

The basis {ZZZ1,ZZZ2, . . . ,ZZZn} is “reciprocal/biorthogonal” to {zzz1, zzz2, . . . , zzzn} in
this precise sense:

ZZZα···zzzβ = hαν̇ z̄zzν̇···zzzβ = hαν̇hν̇β = δα
β (31.1)
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The expansion (28) can in this notation be written

UUU = zzzµ(ZZZµ···UUU) (31.2)

Turning now to the explicit construction of the vectors ZZZµ: one could, by
mimicry of §2, proceed directly from (29). But the evaluation of ‖hµν̇‖ is tedious
except when n is small. It becomes advisable, therefore, to proceed indirectly,
by methods which imitate those developed in §4 and exploit the resources of
what might be called the “exterior spinor calculus.” Such a program is made
particularly easy to carry out by the happy circumstance that equations (31)
contain no explicit reference conjugated variables, no dotted indices; we (are
free, therefore, to make occasional use of roman indices, and) can in direct
imitation of (26) write

ZZZα ≡ (MMMα)dual ≺ Zα
µ = 1

detZ
εk1k2...kα...kn

zk1
1 z

k2
2 · · · zkα

α · · · zkn
n (32)

↑ ↑
replace with µ omit this factor

where MMMα is a certain (n − 1)th-order wedge product—the obvious variant of
(24.1)—and where detZ = εk1k2...kn

zk1
1 z

k2
2 · · · zkn

n . It is then obvious that

Zα
µz

µ
β = δα

β (33)

Note that superscripted zzz’s give rise to subscripted ZZZ’s; if we had need of Zαµ

we would have to draw upon gµν , but in fact we appear to have no such need.

6. Reciprocal of a system of non-orthogonal functions. Let linearly independent
complex-valued functions {f1(x), f2(x), . . . , fn(x)} be defined on some interval,
which in point merely of notational convenience I will take to be the unit interval
[0, 1], and let the “inner product” of such functions be defined20

(f̄ , g) ≡
∫ 1

0

f(x)g(x)ω(x)dx with ω(x) real and non-negative (34)

We agree to consider those functions to comprise a “natural basis” in an
n-dimensional function space Cn, in terms of which the general element can
be displayed

ϕ(x) = ϕαfα(x)

Writing (compare (27))
hα̇β ≡ (f̄α̇, fβ) (35)

and proceeding in imitation of (29), we write

Fµ(x) ≡ hµν̇ f̄ν̇(x) (36)

20 Notice that my notation is non-standard: to achieve conformity with prior
practice I write (f̄ , g) where standardly one would write (f, g).
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to define the set of functions {F 1(x), F 2(x), . . . , Fn(x)} “reciprocal” to the
initial set {f1(x), f2(x), . . . , fn(x)}; we expect then to have, as instances of
(31.1) and (31.2),

(Fα, fβ) =
∫ 1

0

Fα(x)fβ(x)ω(x)dx = δα
β (37.1)

ϕ(x) = fµ(x)
∫ 1

0

Fµ(y)ϕ(y)ω(y)dy (37.2)

It is instructive—and really the point of this exercise—to consider the
explicit construction of the functions Fµ(x). Looking particularly to the case
n = 3, we have (compare §3 amd note the manifest hermiticity)

H
–1 = ‖hµν̇‖ = 1

detH




+
∣∣∣∣h2̇2 h2̇3

h3̇2 h3̇3

∣∣∣∣ −
∣∣∣∣h1̇2 h1̇3

h3̇2 h3̇3

∣∣∣∣ +
∣∣∣∣h1̇2 h1̇3

h2̇2 h2̇3

∣∣∣∣
−

∣∣∣∣h2̇1 h2̇3

h3̇1 h3̇3

∣∣∣∣ +
∣∣∣∣h1̇1 h1̇3

h3̇1 h3̇3

∣∣∣∣ −
∣∣∣∣h1̇1 h1̇3

h2̇1 h2̇3

∣∣∣∣
+

∣∣∣∣h2̇1 h2̇2

h3̇1 h3̇2

∣∣∣∣ −
∣∣∣∣h1̇1 h1̇2

h3̇1 h3̇2

∣∣∣∣ +
∣∣∣∣h1̇1 h1̇2

h2̇1 h2̇2

∣∣∣∣


 (38)

with

det H =

∣∣∣∣∣∣
h1̇1 h1̇2 h1̇3

h2̇1 h2̇2 h2̇3

h3̇1 h3̇2 h3̇3

∣∣∣∣∣∣ ≡ h
= εβ1β2β3h1̇β1

h2̇β2
h3̇β3

=
∫ 1

0

∫ 1

0

∫ 1

0

{
f̄1(x1)f̄2(x2)f̄3(x3)

}{
εβ1β2β3fβ1(x

1)fβ2(x
2)fβ3(x

3)
}

· ω(x1)ω(x2)ω(x3)dx1dx2dx3

=
∫ 1

0

∫ 1

0

∫ 1

0

{
f̄1(x1)f̄2(x2)f̄3(x3)

}{
εk1k2k3 f1(x

k1)f2(xk2)f3(xk3)
}

· ω(x1)ω(x2)ω(x3)dx1dx2dx3

Bringing (38) to (36) we obtain results which can be notated

F 1(x) = 1
h

{
+

∣∣∣∣h2̇2 h2̇3

h3̇2 h3̇3

∣∣∣∣ f̄1(x)−
∣∣∣∣h1̇2 h1̇3

h3̇2 h3̇3

∣∣∣∣ f̄2(x) +
∣∣∣∣h1̇2 h1̇3

h2̇2 h2̇3

∣∣∣∣ f̄3(x)
}

F 2(x) = 1
h

{
−

∣∣∣∣h2̇1 h2̇3

h3̇1 h3̇3

∣∣∣∣ f̄1(x) +
∣∣∣∣h1̇1 h1̇3

h3̇1 h3̇3

∣∣∣∣ f̄2(x)−
∣∣∣∣h1̇1 h1̇3

h2̇1 h2̇3

∣∣∣∣ f̄3(x)
}

F 3(x) = 1
h

{
+

∣∣∣∣h2̇1 h2̇2

h3̇1 h3̇2

∣∣∣∣ f̄1(x)−
∣∣∣∣h1̇1 h1̇2

h3̇1 h3̇2

∣∣∣∣ f̄2(x) +
∣∣∣∣h1̇1 h1̇2

h2̇1 h2̇2

∣∣∣∣ f̄3(x)
}
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or again

F 1(x) = 1
h

∣∣∣∣∣∣
f̄1(x) h1̇2 h1̇3

f̄2(x) h2̇2 h2̇3

f̄3(x) h3̇2 h3̇3

∣∣∣∣∣∣
F 2(x) = 1

h

∣∣∣∣∣∣
h1̇1 f̄1(x) h1̇3

h2̇1 f̄2(x) h2̇3

h3̇1 f̄3(x) h3̇3

∣∣∣∣∣∣
F 3(x) = 1

h

∣∣∣∣∣∣
h1̇1 h1̇2 f̄1(x)
h2̇1 h2̇2 f̄2(x)
h3̇1 h3̇2 f̄3(x)

∣∣∣∣∣∣
These equations make very clear how it happens that (37.1) has been achieved,
for we have

(F 1, fβ) = 1
h

∣∣∣∣∣∣
h1̇β h1̇2 h1̇3

h2̇β h2̇2 h2̇3

h3̇β h3̇2 h3̇3

∣∣∣∣∣∣ =
{ 1 if β = 1

0 otherwise

= δ1β
...

etc.

The dimensional generalization is straightforward.

I have described above a method for constructing functions Fα(x) which
are “biorthogonal” to {f1(x), f2(s), . . . , fn(x)} in the sense that

F 1(x) ⊥ • f2(), f3(x), . . . , fn(x)
F 2(x) ⊥ f1(x), • f3(x), . . . , fn(x)

...
Fn(x) ⊥ f1(x), f2(x), f3(x), . . . •

That the essence of the method is, in fact, entirely classical becomes clear upon
perusal of the §10.1 with which A. Erdélyi et al21 introduce their account of the
theory of orthogonal polynomials; the method—applied to a somewhat different
objective (construction of a set of functions orthogonal to a given set of linearly
independent functions) and used hierarchically

φ2(x) ⊥ f1(x)
φ3(x) ⊥ f1(x), f2(x)

...
φn(x) ⊥ f1(x), f2(x), . . . fn−1(x)

—has for a long time been familiar as the “Gram–Schmidt orthogonalization
process,” in which context the expressions detH (with matrices H of ascending

21 Higher Transcendental Functions II: Bateman Manuscript Project ().



22 Reciprocal systems of non-orthogonal vectors

dimension) are known as “Gram determinants,” and play a natural role in the
normalization of the functions φk(x).22

7. Reciprocal of a system of non-orthogonal quantum states. Given a system{
|ψ1), |ψ2), . . . , |ψn)

}
of linearly independent quantum states, we seek a second

system
{
|Ψ1), |Ψ2), . . . , |Ψn)

}
which is “reciprocal” to the first in the familiar

sense

|Ψα) ⊥
{
|ψ1), . . . , |ψα−1), |ψα), |ψα1), . . . , |ψn)

}
↑

omit

of which
(Ψα|ψβ) = δα

β

provides more compact (and somewhat more detailed) expression. If

|ψ) ∈ Hn spanned by
{
|ψ1), |ψ2), . . . , |ψn)

}
we would find ourselves then in position to write

|ψ) =
n∑

α=1

cα|ψα) with cα = (Ψα|ψ) (39)

“Orthonormality” intrudes spontaneously into quantum mechanical discourse
(the eigenstates of observables are orthonormal), but many of the simplifications
we have learned to associate with orthonormality—the Fourier decomposition
formula (39) is in this resect illustrative—can more properly be attributed to
reciprocity or “biorthonormality.” The point is seldom remarked because{

|Ψ1), |Ψ2), . . . , |Ψn)
}

and
{
|ψ1), |ψ2), . . . , |ψn)

}
become coincident

when the latter happen in fact to be orthonormal; such a state of affairs (for the
reason already remarked) often arises spontaneously, but cannot be presumed
when

{
|ψ1), |ψ2), . . . , |ψn)

}
refers to the states that have been used to concoct

a “mixed state.”

22 Erhard Schmidt (–) was a student of Hilbert; he is remembered
mainly for his study of the integral equation f(s) = φ(s) − λ

∫ b

a
K(s, t)φ(t)dt,

which stimulated the development of the “Hilbert space” concept and
contributed to the creation of modern functional analysis, of which Schmidt
is considered a founding father. The Gram–Schmidt process is described in
Schmidt’s major paper of . I have, however, been unable to discover any
particulars concerning the life and work of the “Gram” who has the distinction
of standing in front of the hyphen. For related material, see sections 103.G,
208.E and 317.A in the Encyclopedic Dictionary of Mathematics (2nd edition,
).
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When we refer to a “wave function” ψ(x) we refer in fact not to the
quantum state |ψ) itself but to a system of continuously-indexed coordinates
descriptive of that state:

|ψ) =
∫
|x) dx (x|ψ)︸ ︷︷ ︸ :

{
|x)

}
are eigenstates of the xxx -operator

ψ(x)

If we are content to ask for wave functions reciprocal to a system of wave
functions{

Ψ1(x),Ψ2(x), . . . ,Ψn(x)
}

reciprocal to
{
ψ1(x), ψ2(x), . . . , ψn(x)

}
—if we are, in other words, content to proceed in reference to a coordinate
system—then the construction sketched in §6 supplies a detailed answer to the
question. And an answer which seems likely to serve most practical needs. But
if we insist upon proceeding without reference to a coordinate system then we
acquire an obligation to undertake formal extension of ideas presented in §4;
we need to get in position to write things like

|Ψα) ∼
(
|ψ1) ∧ |ψ2) ∧ · · · ∧|ψα) ∧ · · · ∧ |ψn)

)dual

↑
omit

I have pursued this topic only far enough to convince myself that one does not
encounter need of such bizarre objects as “continuously indexed analogs of the
Levi-Civita tensor;”23 the theory appears to unfold without incident (not at all
surprisingly, since it does so in every representation), but I am not motivated
to pursue it on this occasion.

8. Conclusion. “Reciprocity” in the sense used here—“biorthogonality”—is a
useful concept; with its aid one can get along perfectly well even in the absence
of orthogonality, doing all the familiar things one is used to relying upon (or
so we mistakenly imagine) orthogonality to do. But it seems not to be a tool
appropriate to the clarification of the issue which motivated this exercise.

23 One does encounter Levi-Civita tensors, but they wear discrete indices
which serve to distinguish one “continuous index” from another.


